Bioinformatika merupakan kajian yang memadukan disiplin biologi molekul,
matematika dan teknik informasi (TI). Ilmu ini didefinisikan sebagai aplikasi dari alat komputasi dan analisa untuk menangkap dan menginterpretasikan data-data biologi
molekul. Biologi molekul sendiri juga merupakan bidang interdisipliner, mempelajari
kehidupan dalam level molekul.
Mula-mula bidang kajian ini muncul atas inisiatif para ahli biologi molekul dan
ahli statistik, berdasarkan pola pikir bahwa semua gejala yang ada di alam ini bisa dibuat
secara artificial melalui simulasi dari data-data yang ada. Pada bidang Bioinformatika,
data-data atau tindak-tanduk gejala genetika menjadi inti pembentukan simulasi.
Pada saat ini, Bioinformatika ini mempunyai peranan yang sangat penting,
diantaranya adalah untuk manajemen data-data biologi molekul, terutama sekuen DNA
dan informasi genetika . Perangkat utama Bioinformatika adalah software dan didukung
oleh kesediaan internet.
Bioinformatika mempunyai peluang yang sangat besar untuk berkembang karena
banyak sekali cabang-cabang ilmu yang terkait dengannya. Namun sayangnya di
Indonesia sendiri Bioinformatika masih belum dikenal oleh masyarakat luas. Di kalangan
peneliti biologi, mungkin hanya para peneliti biologi molekul yang mengikuti
perkembangannya karena keharusan menggunakan perangkat-perangkat Bioinformatika
untuk analisa data. Sementara di kalangan TI --mengingat kuatnya disiplin biologi yang
menjadi pendukungnya-- kajian ini juga masih kurang mendapat perhatian.
Latar Belakang Sejarah
Penetrasi Teknologi Informasi (TI) dalam berbagai disiplin ilmu telah
melipatgandakan perkembangan ilmu bersangkutan. Berbagai kajian baru bermunculan,
sejalan dengan perkembangan TI itu sendiri dan disiplin ilmu yang didukungnya.
Aplikasi TI dalam bidang biologi molekul telah melahirkan bidang Bioinformatika.
Kajian ini semakin penting, sebab perkembangannya telah mendorong kemajuan
bioteknologi di satu sisi, dan pada sisi lain memberi efek domino pada bidang
kedokteran, farmasi, lingkungan dan lainnya.
Kajian baru Bioinformatika ini tak lepas dari perkembangan biologi molekul
modern yang ditandai dengan kemampuan manusia untuk memahami genom, yaitu cetak
biru informasi genetik yang menentukan sifat setiap makhluk hidup yang disandi dalam
bentuk pita molekul DNA (asam deoksiribonukleat). Kemampuan untuk memahami dan
memanipulasi kode genetik DNA ini sangat didukung oleh TI melalui perangkat
perangkat keras maupun lunak. Hal ini bisa dilihat pada upaya Celera Genomics,
perusahaan bioteknologi Amerika Serikat yang melakukan pembacaan sekuen genom
manusia yang secara maksimal memanfaatkan TI sehingga bisa melakukan pekerjaannya
dalam waktu yang singkat (hanya beberapa tahun), dibanding usaha konsorsium lembaga
riset publik AS, Eropa, dan lain-lain, yang memakan waktu lebih dari 10 tahun.
Kelahiran Bioinformatika modern tak lepas dari perkembangan bioteknologi di
era tahun 70-an, dimana seorang ilmuwan AS melakukan inovasi dalam mengembangkan
teknologi DNA rekombinan. Berkat penemuan ini lahirlah perusahaan bioteknologi
pertama di dunia, yaitu Genentech di AS, yang kemudian memproduksi protein hormon
insulin dalam bakteri, yang dibutuhkan penderita diabetes. Selama ini insulin hanya bisa didapatkan dalam jumlah sangat terbatas dari organ pankreas sapi.
Bioteknologi modern ditandai dengan kemampuan pada manipulasi DNA.
Rantai/sekuen DNA yang mengkode protein disebut gen. Gen ditranskripsikan menjadi
mRNA, kemudian mRNA ditranslasikan menjadi protein. Protein sebagai produk akhir
bertugas menunjang seluruh proses kehidupan, antara lain sebagai katalis reaksi biokimia dalam tubuh (disebut enzim), berperan serta dalam sistem pertahanan tubuh melawan virus, parasit dan lain-lain (disebut antibodi), menyusun struktur tubuh dari ujung kaki (otot terbentuk dari protein actin, myosin, dan sebagainya) sampai ujung rambut (rambut tersusun dari protein keratin), dan lain-lain. Arus informasi, DNA -> RNA -> Protein, inilah yang disebut sentral dogma dalam biologi molekul.
Sekuen DNA satu organisme, yaitu pada sejenis virus yang memiliki kurang lebih
5.000 nukleotida/molekul DNA atau sekitar 11 gen, berhasil dibaca secara menyeluruh
pada tahun 1977.
Sekuen seluruh DNA manusia terdiri dari 3 milyar nukleotida yang menyusun 100.000 gen dapat dipetakan dalam waktu 3 tahun. Saat ini terdapat milyaran data nukleotida yang tersimpan dalam database DNA, GenBank di AS yang didirikan tahun 1982. Di Indonesia, ada Lembaga Biologi Molekul Eijkman yang terletak di Jakarta. Di sini kita bisa membaca sekuen sekitar 500 nukleotida hanya dengan membayar $15. Trend yang sama juga nampak pada database lain seperti database sekuen asam amino penyusun protein, database struktur 3D protein, dan sebagainya. Inovasi teknologi DNA chip yang dipelopori oleh perusahaan bioteknologi AS, Affymetrix di Silicon Valley telah mendorong munculnya database baru mengenai RNA.
Desakan kebutuhan untuk mengumpulkan, menyimpan dan menganalisa data-data
biologis dari database DNA, RNA maupun protein inilah yang semakin memacu
perkembangan kajian Bioinformatika.
1.2. Contoh-contoh Penggunaan
1.2.1. Bioinformatika dalam Bidang Klinis
Bioinformatika dalam bidang klinis sering disebut sebagai informatika klinis
(clinical informatics). Aplikasi dari informatika klinis ini berbentuk manajemen data-data klinis dari pasien melalui Electrical Medical Record (EMR) yang dikembangkan oleh Clement J. McDonald dari Indiana University School of Medicine pada tahun 1972.
McDonald pertama kali mengaplikasikan EMR pada 33 orang pasien penyakit gula
(diabetes). Sekarang EMR ini telah diaplikasikan pada berbagai penyakit. Data yang
disimpan meliputi data analisa diagnosa laboratorium, hasil konsultasi dan saran, foto rontgen, ukuran detak jantung, dan lain lain. Dengan data ini dokter akan bisa
menentukan obat yang sesuai dengan kondisi pasien tertentu dan lebih jauh lagi, dengan dibacanya genom manusia, akan memungkinkan untuk mengetahui penyakit genetik
seseorang, sehingga penanganan terhadap pasien menjadi lebih akurat.
1.2.2. Bioinformatika untuk Identifikasi Agent Penyakit Baru
Bioinformatika juga menyediakan tool yang sangat penting untuk identifikasi
agent penyakit yang belum dikenal penyebabnya. Banyak sekali penyakit baru yang
muncul dalam dekade ini, dan diantaranya yang masih hangat adalah SARS (Severe
Acute Respiratory Syndrome).
Pada awalnya, penyakit ini diperkirakan disebabkan oleh virus influenza karena
gejalanya mirip dengan gejala pengidap influenza. Akan tetapi ternyata dugaan ini salah karena virus influenza tidak terisolasi dari pasien. Perkirakan lain penyakit ini disebabkan oleh bakteri Candida karena bakteri ini terisolasi dari beberapa pasien. Tapi perkiraan ini juga salah. Akhirnya ditemukan bahwa dari sebagian besar pasien SARS terisolasi virus
Corona jika dilihat dari morfologinya. Sekuen genom virus ini kemudian dibaca dan dari hasil analisa dikonfirmasikan bahwa penyebab SARS adalah virus Corona yang telah
berubah (mutasi) dari virus Corona yang ada selama ini.
Dalam rentetan proses ini, Bioinformatika memegang peranan penting. Pertama
pada proses pembacaan genom virus Corona. Karena di database seperti GenBank,
EMBL (European Molecular Biology Laboratory), dan DDBJ (DNA Data Bank of Japan)
sudah tersedia data sekuen beberapa virus Corona, yang bisa digunakan untuk mendisain
primer yang digunakan untuk amplifikasi DNA virus SARS ini. Software untuk
mendisain primer juga tersedia, baik yang gratis maupun yang komersial. Contoh yang
gratis adalah Webprimer yang disediakan oleh Stanford Genomic Resources
(http://genome-www2.stanford.edu/cgi-bin/SGD/web-primer), GeneWalker yang
disediakan oleh Cybergene AB (http://www.cybergene.se/primerdisain/genewalker), dan
lain sebagainya. Untuk yang komersial ada Primer Disainer yang dikembangkan oleh
Scientific & Education Software, dan software-software untuk analisa DNA lainnya
seperti Sequencher (GeneCodes Corp.), SeqMan II (DNA STAR Inc.), Genetyx
(GENETYX Corp.), DNASIS (HITACHI Software), dan lain lain.
Kedua pada proses mencari kemiripan sekuen (homology alignment) virus yang
didapatkan dengan virus lainnya. Dari hasil analisa virus SARS diketahui bahwa genom
virus Corona penyebab SARS berbeda dengan virus Corona lainnya. Perbedaan ini
diketahui dengan menggunakan homology alignment dari sekuen virus SARS.
Selanjutnya, Bioinformatika juga berfungsi untuk analisa posisi sejauh mana suatu virus
berbeda dengan virus lainnya.
1.2.3. Bioinformatika untuk Diagnosa Penyakit Baru
Untuk menangani penyakit baru diperlukan diagnosa yang akurat sehingga dapat
dibedakan dengan penyakit lain. Diagnosa yang akurat ini sangat diperlukan untuk
pemberian obat dan perawatan yang tepat bagi pasien.
Ada beberapa cara untuk mendiagnosa suatu penyakit, antara lain: isolasi agent
penyebab penyakit tersebut dan analisa morfologinya, deteksi antibodi yang dihasilkan
dari infeksi dengan teknik enzyme-linked immunosorbent assay (ELISA), dan deteksi gen
dari agent pembawa penyakit tersebut dengan Polymerase Chain Reaction (PCR).
Teknik yang banyak dan lazim dipakai saat ini adalah teknik PCR. Teknik ini
sederhana, praktis dan cepat. Yang penting dalam teknik PCR adalah disain primer untuk
amplifikasi DNA, yang memerlukan data sekuen dari genom agent yang bersangkutan
dan software seperti yang telah diuraikan di atas. Disinilah Bioinformatika memainkan
peranannya. Untuk agent yang mempunyai genom RNA, harus dilakukan reverse
transcription (proses sintesa DNA dari RNA) terlebih dahulu dengan menggunakan
enzim reverse transcriptase. Setelah DNA diperoleh baru dilakukan PCR. Reverse
transcription dan PCR ini bisa dilakukan sekaligus dan biasanya dinamakan RT-PCR.
Teknik PCR ini bersifat kualitatif, oleh sebab itu sejak beberapa tahun yang lalu
dikembangkan teknik lain, yaitu Real Time PCR yang bersifat kuantitatif. Dari hasil Real
Time PCR ini bisa ditentukan kuantitas suatu agent di dalam tubuh seseorang, sehingga
bisa dievaluasi tingkat emergensinya. Pada Real Time PCR ini selain primer diperlukan
probe yang harus didisain sesuai dengan sekuen agent yang bersangkutan. Di sini juga
diperlukan software atau program Bioinformatika.
1.2.4. Bioinformatika untuk Penemuan Obat
Cara untuk menemukan obat biasanya dilakukan dengan menemukan zat/senyawa
yang dapat menekan perkembangbiakan suatu agent penyebab penyakit. Karena
perkembangbiakan agent tersebut dipengaruhi oleh banyak faktor, maka faktor-faktor
inilah yang dijadikan target. Diantaranya adalah enzim-enzim yang diperlukan untuk
perkembangbiakan suatu agent Mula-mula yang harus dilakukan adalah analisa struktur
dan fungsi enzim-enzim tersebut. Kemudian mencari atau mensintesa zat/senyawa yang
dapat menekan fungsi dari enzim-enzim tersebut.
Analisa struktur dan fungsi enzim ini dilakukan dengan cara mengganti asam
amino tertentu dan menguji efeknya. Analisa penggantian asam amino ini dahulu
dilakukan secara random sehingga memerlukan waktu yang lama. Setelah Bioinformatika
berkembang, data-data protein yang sudah dianalisa bebas diakses oleh siapapun, baik
data sekuen asam amino-nya seperti yang ada di SWISS-PROT
(http://www.ebi.ac.uk/swissprot/) maupun struktur 3D-nya yang tersedia di Protein Data
Bank (PDB) (http://www.rcsb.org/pdb/). Dengan database yang tersedia ini, enzim yang
baru ditemukan dapat dibandingkan sekuen asam amino-nya, sehingga bisa diperkirakan
asam amino yang berperan untuk aktivitas (active site) dan kestabilan enzim tersebut.
Setelah asam amino yang berperan sebagai active site dan kestabilan enzim
tersebut ditemukan, kemudian dicari atau disintesa senyawa yang dapat berinteraksi
dengan asam amino tersebut. Dengan data yang ada di PDB, maka dapat dilihat struktur
3D suatu enzim termasuk active site-nya, sehingga bisa diperkirakan bentuk senyawa
yang akan berinteraksi dengan active site tersebut. Dengan demikian, kita cukup
mensintesa senyawa yang diperkirakan akan berinteraksi, sehingga obat terhadap suatu
penyakit akan jauh lebih cepat ditemukan. Cara ini dinamakan “docking” dan telah
banyak digunakan oleh perusahaan farmasi untuk penemuan obat baru.
Meskipun dengan Bioinformatika ini dapat diperkirakan senyawa yang
berinteraksi dan menekan fungsi suatu enzim, namun hasilnya harus dikonfirmasi dahulu
melalui eksperimen di laboratorium. Akan tetapi dengan Bioinformatika, semua proses
ini bisa dilakukan lebih cepat sehingga lebih efisien baik dari segi waktu maupun
finansial.
Tahun 1997, Ian Wilmut dari Roslin Institute dan PPL Therapeutics Ltd,
Edinburgh, Skotlandia, berhasil mengklon gen manusia yang menghasilkan faktor IX
(faktor pembekuan darah), dan memasukkan ke kromosom biri-biri. Diharapkan biri-biri
yang selnya mengandung gen manusia faktor IX akan menghasilkan susu yang
mengandung faktor pembekuan darah. Jika berhasil diproduksi dalam jumlah banyak
maka faktor IX yang diisolasi dari susu harganya bisa lebih murah untuk membantu para
penderita hemofilia.
Friday, 22 June 2012
Bioinformatika
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment